Blog

Sep 08, 2025

TensorFlow Models NLP Library for Beginners

This notebook shows how to reuse a nlp.networks.BertEncoder from TensorFlow Model Garden to power three tasks: (1) pretraining with nlp.models.BertPretrainer (masked-LM + next-sentence), (2) span labeling with nlp.models.BertSpanLabeler (start/end logits for SQuAD-style QA), and (3) classification with nlp.models.BertClassifier ([CLS] head). You install tf-models-official (or tf-models-nightly for latest), import tensorflow_models.nlp, build small dummy examples, run each model forward pass, and compute losses (weighted sparse CE for MLM/NSP; CE for span start/end; CE for classification). Result: a clear pattern for wrapping one encoder into multiple BERT task heads with concise, production-friendly APIs.

Source: HackerNoon →


Share

BTCBTC
$91,348.00
1.51%
ETHETH
$3,011.88
3.3%
USDTUSDT
$0.999
0.04%
XRPXRP
$2.11
4.73%
BNBBNB
$894.94
4.07%
SOLSOL
$136.55
3.07%
USDCUSDC
$1.000
0.01%
TRXTRX
$0.286
1.42%
STETHSTETH
$3,010.04
3.34%
DOGEDOGE
$0.155
4.28%
ADAADA
$0.463
2.54%
FIGR_HELOCFIGR_HELOC
$1.04
0.33%
WBTWBT
$60.10
2.02%
WSTETHWSTETH
$3,671.97
3.33%
WBTCWBTC
$91,158.00
1.77%
ZECZEC
$675.14
7.91%
WBETHWBETH
$3,263.69
3.3%
HYPEHYPE
$38.71
0.59%
BCHBCH
$486.28
7.36%
LINKLINK
$13.50
2.18%