Blog
11 hours ago
Stop Parsing Nightmares: Prompting LLMs to Return Clean, Parseable JSON
- Natural-language LLM outputs are great for humans but painful for code; you need strict JSON to automate anything reliably. - You can “force” JSON by combining four elements in your prompt: hard format rules, a concrete JSON template, validation constraints, and 1–2 few-shot examples. - Most JSON failures (extra text, syntax errors, wrong types, missing fields) are predictable and fixable with small prompt tweaks plus simple backend safeguards. - Once models reliably emit structured JSON, they become drop-in components in data pipelines, customer support flows, and project management tools. - For high-stakes use cases, pair strong prompts with JSON Schema validation and retry logic to reach production-level robustness.
Source: HackerNoon →