Blog
Oct 28, 2025
How Hybrid AI Models Balance Memory and Efficiency
By combining the advantages of state space models (SSMs) with attention mechanisms, SAMBA presents a hybrid neural architecture that enables effective, scalable language modeling with an almost infinite context length. SAMBA surpasses both pure attention-based and SSM-based models on a variety of reasoning, comprehension, and coding metrics when trained on SlimPajama with consistent setups. The model processes sequences up to 256K tokens with little fine-tuning, achieving exceptional speed and extrapolation capacity.
Source: HackerNoon →