Blog

6 days ago

CodeGrok MCP: Semantic Code Search That Saves AI Agents 10x in Context Usage

AI coding agents using grep/ripgrep waste thousands of tokens and context on false positives. CodeGrok MCP uses AST-based semantic search with local vector embeddings to return only relevant code chunks. It parses code into symbols, generates 768-dim embeddings via CodeRankEmbed, and stores them in ChromaDB all locally. The result: semantic understanding instead of keyword matching.

Source: HackerNoon →


Share

BTCBTC
$90,604.00
0.05%
ETHETH
$3,093.01
0.24%
USDTUSDT
$0.999
0.01%
XRPXRP
$2.09
0.41%
BNBBNB
$913.04
1.1%
SOLSOL
$136.08
0.11%
USDCUSDC
$1.00
0.02%
TRXTRX
$0.298
0.16%
STETHSTETH
$3,092.36
0.23%
DOGEDOGE
$0.140
0.17%
FIGR_HELOCFIGR_HELOC
$1.00
3.2%
ADAADA
$0.390
0.82%
BCHBCH
$654.52
2.71%
WSTETHWSTETH
$3,786.04
0.22%
WBTWBT
$55.03
0.53%
WBETHWBETH
$3,363.20
0.23%
WBTCWBTC
$90,484.00
0.28%
WEETHWEETH
$3,357.67
0.25%
USDSUSDS
$1.000
0.04%
LINKLINK
$13.20
0.59%